COLIBACILLOSIS IN A PEACOCK - A CASE REPORT

K.S. Subramanian, D. Manohar Paul and Mathew C. John

Graduate Assistant, VUT & RC, Tirunelveli, Tamil Nadu, India.
Associate Professor, Department of Biotechnology, Madras Veterinary College, Chennai, Tamil Nadu 600007, India.
Department of Wildlife Science, Madras Veterinary College, Chennai, Tamil Nadu 600007, India.

Received on 3 July 2000 Accepted on 5 September 2000

Escherichia coli is a common enteric inhabitant in most mammals and birds. Members of the family Enterobacteriaceae are commonly found in the fecal microflora of granivorous passeriform birds (Glunder, 1982). Similarly E. coli infection in a semi-feral peacock was reported by Rao et al. (1981). This paper describes one such case of colibacillosis in a peacock.

An adult peacock from a local temple was brought to the Madras Veterinary College with a history of greenish-white to greenish-brown diarrhoea. The peacock was observed to be dull, very dehydrated, unable to stand on its own and leaning on the wall. On examination soiled vent with greenish watery diarrhoea was observed.

Fecal droppings were collected for microbiological, virological and parasitological examinations. The fecal samples were subjected to cultural and biochemical tests for isolation and identification of microorganisms as per the procedure described by Edwards and Ewing (1972) and Carter (1984). Antibiotic sensitivity test of the isolate was carried out as outlined by Bauer et al. (1966). The fecal sample was also screened for the presence of New Castle disease virus using standard laboratory procedures as described by Alexander (1988).

Parasitological examination revealed no helminthic infection. The bird was reported to be dewormed regularly. The bird had also been protected with new castle disease vaccine and the fecal sample was reported as negative for the presence of New castle disease virus. The cultural and biochemical examination of the fecal sample revealed the presence of Gram negative rods which produced acid and gas from glucose and lactose, indole positive, methyl-red positive and hence identified as E. coli.

The fecal isolate was found to be sensitive to Ciprofloxacin, Norfloxacin, Perfloxacin, Amikacin, Sisomycin, Chloramphenicol, Amoxycillin, Gentamycin and resistant to Pencillin, Ampicillin, Cloxacilin, Tetracycline and Triomethoprim.

Graham and Graham (1975) isolated E. coli from the feces of Psitacines and granivorous passeriform birds. Although E. coli is recognised as a pathogen causing enteritis and septicemia in domestic mammals and poultry, demonstration of E. coli in the feces of normal animals is not, per se considered diagnostically significant. However abundance of E. coli in the feces of birds with enteritis should be considered as a possible pathogen. In the present case severe E. coli infection combined with stress would have resulted in diarrhoea and dehydration.

Acknowledgement
The authors thank the Dean, Faculty of Basic Sciences and the Director of Clinics, Madras Veterinary College for the facilities provided.

References